Define spin-1 Boson site
Posted: 02 Apr 2020, 01:10
				
				Dear Community,
How we can define the spin-1 Boson site for the following Hamiltonian:
\(H = - t \sum_{i, \sigma} \left(b^\dagger_{i, \sigma} b_{i+1, \sigma} + H.c. \right) + U_1 \sum_i n_{i, \sigma}\left(n_{i, \sigma}-1\right) + U_2 \sum_i \mathbf{S}_i^2\)
where spin operator \(\mathbf{S}_i = \sum_{\sigma,\sigma'} b^\dagger_{\sigma,\sigma'} S_{\sigma,\sigma'} b_{\sigma,\sigma'} \), with standard spin-1 matrice \(S_{\sigma,\sigma'}\).
Is it right like this?
How to define spin operators and add Last term when adding terms of the Hamiltonian?
			How we can define the spin-1 Boson site for the following Hamiltonian:
\(H = - t \sum_{i, \sigma} \left(b^\dagger_{i, \sigma} b_{i+1, \sigma} + H.c. \right) + U_1 \sum_i n_{i, \sigma}\left(n_{i, \sigma}-1\right) + U_2 \sum_i \mathbf{S}_i^2\)
where spin operator \(\mathbf{S}_i = \sum_{\sigma,\sigma'} b^\dagger_{\sigma,\sigma'} S_{\sigma,\sigma'} b_{\sigma,\sigma'} \), with standard spin-1 matrice \(S_{\sigma,\sigma'}\).
Is it right like this?
Python: Select all
        # Set site 
        boson_site_1 = BosonSite(Nmax=n_max, conserve='N')      # spin component 1
        boson_site_2 = BosonSite(Nmax=n_max, conserve='N')      #  spin component 0
        boson_site_3 = BosonSite(Nmax=n_max, conserve='N')      #  spin component -1
        
        # Set lattice       
        lat = Lattice([L], [boson_site_1, boson_site_2, boson_site_3], bc=bc, bc_MPS=bc_MPS) 
        # Add terms of the Hamiltonian
        self.add_coupling(-t,0,'Bd',0,'B',1)   
        self.add_coupling(-t,1,'Bd',1,'B',1)   
        self.add_coupling(-t,2,'Bd',2,'B',1)   How to define spin operators and add Last term when adding terms of the Hamiltonian?
